Olfactory disorders – work-up, typical findings and therapy

Antje Welge-Lüssen
Department of Otorhinolaryngology
University Hospital Basel

Prevalence smell disorders

- 5% anosmic > 45 years
- 15% hyposmic
 (Brämerson et al., Laryngoscope 2004; Landis et al., Laryngoscope 2004)
- age > 70 y: 30% anosmic
 (Ozy et al., Science 1984)

Smell test necessary?

Self assessment of olfactory function: very poor!

Olfactory testing mandatory!
Screening – Test

Screening test: fast, reliable, high sensitivity

12 - Item Screening Test
Sniffin’ Sticks Test 1 of 4 (25%)

8 - Item Screening Test
Smell Diskettes 1 of 3 (33%)

Screening Test 6 - Items

Psychophysical Smell Tests

Screening Test - 12 Items

Psychophysical Smell Tests

threshold + identification or discrimination
reliable and validated!
Psychophysical Tests

Threshold:
concentration where 50% of stimuli are detected
(no episodic or semantic memory used, low cognitive burden)

Suprathreshold tests:
Discrimination: non verbal ability to differentiate between odors
Identification: verbal test, recognition and communication of its correct identity
correlate with subjects’ executive function and episodic memory

Psychophysical tests

- **UPSIT**
 University of Pennsylvania Smell Identification Test

- **Sniffin’Sticks**
 Threshold Discrimination Identification

Sniffin’Sticks test results

<table>
<thead>
<tr>
<th>Score</th>
<th>anosmia</th>
<th>hyposmia</th>
<th>normosmia</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDI - score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anosmia: 0 - 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hyposmia: 16 - 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>normosmia: 30 - 48</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Retronasal testing

ortho- and retronasal perception differ

Clinical Assessment of Retronasal Olfactory Function

Sommerschule 2018, Prof. Antje Welge-Lüssen
Retronasal testing

Retronasal testing of olfactory function: an investigation and comparison in seven countries

Dane Cevi, Holte Hoffmann, Carl Plathet, Filippos Karatza - Antje Welge-Lüssen, Jan Calkins - Insitute for Laryngology - Eduard Heiron - Thomas Hansem

2010

Fig. 3: Frequency of retinal testing in patients with anosmia (N = 90), hyposmia (N = 136), and normal controls (N = 252)

uni vs. bilateral?

Olfactory testing in clinical settings - is there additional benefit from unilateral testing?

Antje Welge-Lüssen1, Veitze Gudrun2, Marit Wolkenberger3, Thomas Hennino4

23.4% of 518 patients: difference of > 6 points

Recording of evoked potentials (OEP)

Olfactometer

Picture of potential

olfactory evoked potential
Posttraumatic anosmia

CO2 | H2S | Vanillin

Evoked potentials

medicolegal questions

Classification in clinical set-ups

Sinonasal Disorders

Olfactory disorders caused by pathology within the nose or paranasal sinuses

diagnosis
- history
- clinical examination (nasal endoscopy)
- psychophysical smell tests
- imaging (computed tomography / magnetic resonance imaging)

CO2 H2S Vanillin

left right

0 2048 ms

Survey in ENT Hospitals (n=70) in Germany, in (n=20) Austria and (n=12) in Switzerland

Damm et al, 2004

Chen et al, 2013

Nordin et Brämerson 2008

Diagnosis - history - clinical examination (nasal endoscopy) - psychophysical smell tests - imaging (computed tomography / magnetic resonance imaging)

Damm et al, 2004

Sinonasal Disorders

Olfactory disorders caused by pathology within the nose or paranasal sinuses

diagnosis
- history
- clinical examination (nasal endoscopy)
- psychophysical smell tests
- imaging (computed tomography / magnetic resonance imaging)
Olfactory function in CRS

Polyposis: strongest predictor for a poor olfactory function

Sensorineural lesion in OE

Therapy – topical steroids

Therapy – allergic rhinitis
Systemic steroids

Treatment of smell loss with systemic methylprednisolone

n=425
Methylprednisolone, 40 mg, decreasing 5 mg every second day (350mg)

Schneuer et al., 2012

Therapy – systemic steroids

Olfactory outcomes in chronic rhinosinusitis with nasal polyposis after medical treatments: a systematic review and meta-analysis.

Schneuer et al., 2012

Cave: side effects of steroids

Osteonecrosis Following Short-term, Low-dose Oral Corticosteroids: A Population-based Study of 24 Million Patients

MATTHIAS E. ORFALI, MD

Incidence: never: 0.083%
once: 0.13%
twice: 0.23%

Surgical therapy

Rationale:

Removal of polyps reduces inflammation ↓ improvement of ventilation

small function improves
Data …conflicting

<table>
<thead>
<tr>
<th>Author</th>
<th>postoperative olfactory deterioration (%)</th>
<th>postoperative improvement (%)</th>
<th>postoperative change in the worse (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pade et al. (2008)</td>
<td>15</td>
<td>70</td>
<td>6</td>
</tr>
<tr>
<td>Delank et al. (2003)</td>
<td>36</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>Downey et al. (2008)</td>
<td>41</td>
<td>67.3</td>
<td>0</td>
</tr>
<tr>
<td>Kimmelman et al. (2010)</td>
<td>20 (n=7)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jiang et al. (2009)</td>
<td>70</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>Wiggard (1999)</td>
<td>40 (n=4)</td>
<td>54.9</td>
<td>6.5</td>
</tr>
<tr>
<td>Tutu et al. (1999)</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

Histology as predictor?

Allergic rhinitis and aspirin-exacerbated respiratory disease as predictors of the olfactory outcome after endoscopic sinus surgery

Ethmoid Histopathology Does Not Predict Olfactory Outcomes after Endoscopic Sinus Surgery

Olfactory function following nasal surgery: a 1-year follow-up

Can Surgeons Predict the Olfactory Outcomes After Endoscopic Surgery for Nasal Polyposis?

Histologic findings do not allow us to predict postoperative olfactory outcome!

Postoperative outcome

Olfactory Function Following Nasal Surgery

Sniffin’ Sticks
n= 387 pre-op.
n= 206, 4 months postop.

Computertomography as predictor

A = 0 %
B = < 25%
C = 25-50%
D = 50-75%
E > 75%
Surgical vs. conservative therapy

Surgical versus medical interventions for chronic rhinosinusitis with nasal polyps.

- **Surgical vs. conservative therapy**
- **Patient with smelling disorder II...**
- **Postinfectious smell disorders**
- **Postinfectious disorders**
- **Incidence 11-42 %, women > men, 40 – 70 years**
- **Close temporal relation**
- **Parainfluenza vs. Rhinovirus ?**
- **Epithelial lesions**
- **Wang et al., Suzuki et al., 2007**
- **Yamagishi et al., 1994**
- **Jafek et al., 2002**
- **Wang et al., Suzuki et al., 2007**
- **Postinfectious disorders**
- **Incidence 11-42 %, women > men, 40 – 70 years**
- **Close temporal relation**
- **Parainfluenza vs. Rhinovirus ?**
- **Epithelial lesions**
- **Yamagishi et al., 1994**
- **Jafek et al., 2002**
- **20.08.2018**
- **Sommerschule 2018, Prof. Antje Welge-Lüssen**
Prognosis… and therapy

Spontaneous recovery
32 % - 66 % (Reden et al, 2006; Duncan et al, 1995)

Co-factors
- age (improvement): < 40 y: 47%; > 70 y: 7%
- duration of disorder

therapeutic options?

Smell training

Odorant Stimulation Enhances Survival of Olfactory Sensory Neurons via MAPK and CREB

Watt et al. Neuron, 2004

140 patients, postinfectious disorder

- 4 strong odors, 16 weeks
- 4 weak odors, 16 weeks

Smell training

140 patients, postinfectious disorder

- high training group: 15 / 24 (63%)
- low training group: 6 / 31 (19%)

Damm et al., 2013

Watt et al., Neuron, 2004

Smell training

Smell Training

Modified Olfactory Training in Patients With Postinfectious Olfactory Loss

Altunbas et al., Laryngoscope 2015

- Influences olfactory bulb volume
- and connectivity

Negoias et al., 2016

Kollndorfer et al., 2015

conventional training vs. modified training vs. controls
Smell Training

Effects of olfactory training: a meta-analysis

Table 1. Summary of the studies included in the meta-analysis of olfactory training outcomes.

<table>
<thead>
<tr>
<th>Study</th>
<th>Condition</th>
<th>Control</th>
<th>Difference</th>
<th>Effect Size</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorokowska et al.</td>
<td>Smell training</td>
<td>Placebo</td>
<td>23%</td>
<td>37%</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Sorokowska et al., Rhinology 2017

Vitamin A

Intranasal vitamin A is beneficial in patients with post-infectious olfactory loss: a retrospective cohort analysis of 170 patients

n = 46
n = 124

Vitamin A

postinfectious smell disorders (n=102)
significant difference!

Hummel et al., submitted

Acupuncture

Effects of traditional Chinese acupuncture in post-viral olfactory dysfunction

15 patients postinfectious smell disorder (mean duration 4 J.)
acupuncture vs. vit. B treatment

Vent et al., 2010

Sniffin Sticks Oral Vit B. complex 1x/d for 12 weeks

1x/week acupuncture 30 minutes for period of 10 weeks

Sniffin Sticks

Acupuncture

60 patients postinfectious smell disorder
2x/ week for 6 weeks acupuncture vs. placebo-acupuncture

p=0.001
p=0.13

Vent et al., 2010

Cuevas et al., to be published
Posttraumatic smell disorders

Definition:
Disorder in close temporal relationship to trauma
with increasing trauma severity
(severity of trauma, duration of unconsciousness): Incidence

Pathophysiology
(intranasal scarring, tearing of fila olfactoria, intracranial lesions)

Posttraumatic disorders

spontaneous recovery: 10 – 35% after 2 years
(Riedel et al, 2000; Doty et al, 1997; Costanzo et Becker, 1998)
improvement up to 6 years
(Welge-Lüssen et al, 2011)

scarring very likely
not yet visible

indirect signs:
biopsy of OE
volume of OB
(Jaffe et al, 02; Müller et al, 05)

Dexamethason in high dose prevents scarring
Steroids in humans

Steroid treatment of posttraumatic anosmia

\(n = 116, \) highdose peroral steroids
\((60\text{mg }/\text{3d}; 40\text{mg }/\text{3d}; 30\text{mg }/\text{3d}; 10\text{mg }/\text{3d}) \)

after 3 months

19 patients improved (16.4%)
- Intervall trauma – therapy: 1-53 mts (median: 10 Mt.)
- spontaneous recovery (no control group)

Zinc - posttraumatic

145 Pat, posttraumatic, 4 groups (\(n=35-39 \))

- Zinglucronat 30mg/d
- steroids (1mg/kg KG)
- nihil

Volume olfactory bulb

Prognostic Value of Olfactory Bulb
Volume Measurement for Recovery in
Postinfectious and Posttraumatic
Olfactory Loss

Changes in olfactory function: measurement of olfactory bulb volume:
higher volume: improvement more likely

Loss of smell

if sudden…
- high impact on quality of life
- subjective disturbance high
- quality of life reduced:
 - lack of body odor
 - loss of joy in eating / loss of appetite
 - gain or loss in weight
 - depression
Summary

- Olfactory disorders are common
- Meticulous History:
 - Time course / medication / allergies / concomitant diseases / operations / family history?
- Self-assessment unreliable – testing mandatory
- Imaging
 - depending on your assumption: CT / MRT or both

Summary

- Therapy in postinfectious / posttraumatic disorders: smell training, Vit A drops
- Sinonasal disorders: topical & systemic steroids,
 - operative therapy ??
- additional examinations
- Counseling